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A New Approach to the Least-Squares Refinement of Highly Covarying Parameters in Crystal 
Structure Determinations 
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When two parameters covary greatly, changes in these parameters should be considered together. By 
selecting new parameters which are the sums and the differences of the parameter shifts of highly 
covarying parameters and by considering the transformed least-squares equations, it is possible to 
discuss ways of optimizing the least-squares method. 

Introduction 

The X-ray structure factor for a particular crystal may 

N 

be expressed as F(S)=  ~ f ,T,(S) exp (2nir,,. S) where 
n = l  

N is the number of atoms in the unit cell, S is a recip- 
rocal lattice vector, IS[ =2  sin 0/2, and r,, is the posi- 
tion of the nth atom of scattering powerf ,  T.(S), where 
T,(S) is the anisotropic temperature factor. 

Let us now transform all points r in the unit cell to 
(0, t ) r = o r + t  where 0 is a point group operation al- 
lowed by the lattice and t is a translation. The X-ray 
structure factor for this new set of points may be ex- 
pressed as 

F0,,(S)=exp (2nit.  S )F(0-aS) .  

Thus we have the identity 

½0 f(S)] 2 + [f(O - xS)l 2) 

= ¼(IF(S) + Fo. ~(S)I 2 + IF(S) - Fo, ,(S)] 2) 

so that for any particular class of reflexions (h + k = 2n, 
etc.) 

(IF(S)]2) = ¼(IF(S) + Fo, ~(S)I) 2) 
+¼(IF(S)-Fo.,(S)I z) (1) 

where (A)  means the expec.ation value of A. 
Now ¼]F(S)+F6,~(S)[ 2 is the value of [F(S)[ 2 we 

would obtain if for every atom at r. we create an iden- 
tical atom at 0 r . + t  and give each atom half weight. 
We shall call this arrangement of atoms the 'mean' 
structure. 

Also ¼[F(S)-Fo.r(S)[ 2 is the value of ]F(S)I 2 we 
would obtain if for every atom at r, we create an iden- 
tical atom at 0 r , + t  but of negative scattering power 
and give each atom half weight. We shall call this ar- 
rangemenL of atoms the 'difference' structure. 

If (0, t) is a symmetry element 0¢ the space group 
then Fo, t(S)=F(S) and the final term of expression (1) 
is zero. If (0, t) is not a symmetry element of the space 
group then the final term of expression (1) makes a 
contribution of between 0 and ½([F(S)]2). The contri- 

bution is only ½([F(S)[ 2) if atoms at r. and atoms 
created at Or, + t can be resolved at the particular value 
of [S[. If the contribution is less than 0" 1 (]F(S)I 2) then 
we can say that (0, t) is a pseudo symmetry element, 
and there must be significant overlap of the atoms at 
r, and those created a~ 0r,,+t. 

If there is an index condition on S such that Fe. ~(S) 
= - F ( S )  for some particular S values, then the only 
contribution to such reflexion, is from the 'difference' 
structure. 

If there is an index condition on S such that F0.,(S) 
= F(S) for some particular S values then the only con- 
tribution to such reflexions is from the mean struc- 
ture. Symmetry elements (0, t) where t is not a unit 
cell repeat allow this separation on certain reflexions. 

Another common _pseudo symmetry element is the 
inversion operation, 1. The phase for the 'difference' 
structure is +_ n/2 from the phase for the 'mean' struc- 
ture for any particular value of S and so no informa- 
tion about the phase of the structure factors for the 
'difference' structure can be obtained from refinement 
of the 'mean' structure. 

It is common in pseudosymmetric structures to re- 
fine the structure initially assuming that the pseudosym- 
metry is real. Artificial peaks in the electron density 
map are created at points or,+t and chemical intui- 
tion can be used to select the real structure, thus giving 
some initial information for the refinement of the 'dif- 
ference' structure. However, refinement at this stage 
often gives poorer values of bond lengths and bond 
angles than can be obtained by selecting the real struc- 
ture from the 'mean' structure. The reason for this can 
be attributed to the high covariance between param- 
eters that were previously regarded as equal, and the 
fact that little effort has been made to eliminate the 
noise resulting from incorrect evaluation of the mag- 
nitude and phase of Fo-Ft. 

Theory 

Let us first consider a 2 × 2 matrix with high covariance. 
The least-squares equations may be written most gen- 
erally as 
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lall I ul I +_ V-~-n-a~22(1 - J) a22 Au2 

I bl 

+ a22(/3- y) 

If fi = 0 then y = 0 and the second equation is a repeat 
of the first, namely ]/~nAu, +_ I/a-22Au2=/3 and so we 
can arbitrarily say ]/~nAu,-T-l/~22Au2=O. The diag- 
onal terms of the 2 x 2 matrix are positive but the off- 
diagonal terms can be positive or negative, and we 
shall consider both cases simultaneously. 

and 

/3 Y I f J ¢ 0  then ]/auAu~= ~ + 

so that 

]/~nAu, + V'-~22Auz- 2/3 _ 1 
- 2 - J  2 - J  

and 

-T- [/-d-nxx Au~ + [/a22 Au2= ~ 2_yy 
J 

( bl + b2 

1(1 1) 
6 + ] /-~nb,+ ]/--~=b2 . 

(a) 

where 

However, we could regard the least-squares equations 
as a combination of two independent least-squares 
equations. 

and 

(b) 

where 

/ IIZIUla "t-  22AU2a=O , 

V~nAuu, + V~22Au2b = 0.  

Equations (a) refine the 'mean' structure and equa- 
tions (b) refinethe 'difference' structure. Aul = Au,, + 
Auu, and Auz= Auz, + AUzb. 

We can express the least-squares equations in matrix 
notation as A U=B. These equations can be re-ex- 
pressed as A1UI=Bi where U=CU1, BI=C+B and 
At= C+AC. If we change from variables Au~, Auz to 
variables 

( ~ A u l  + V~22Au2) and (-T- V~nAux + V~22Au2) 
1 1 

 +v72 
then C=½ 1 1 

and 

AI=  

giving B1 =½ 

b~ b2 

bl b2 -Y- 

½(2-a) o 

5 
0 

2 
thus giving U= (CAfIC +)B. 

In the light of these observations we ale now in a posi- 
tion to discuss the least-squares refinement for struc- 
tures containing a twofold pseudo symmetry element. 

Had we simply ignored off-diagonal terms in the 
least-squares equations, we would have obtained 

This overweights the change in the 'mean' structure 
and underweights the change in the 'difference' struc- 
ture. To get the 'mean' structure to refine, a fractional 
shift is commonly applied to all parameters, meaning 
that the refinement of the difference structure is 
weighted out of existence. Oscillation of the param- 
eters of the mean structure is commonly regarded as 
indicative of convergence. 

If a full-matrix approach is employed, it is found 
that excessive shifts in the difference structure are ob- 
tained. 

In our simple 2 x 2 problem, the difference structure 
refinement depended on y/fi and y -+  0 as J - +  0 and 
it appears that y/fi is not usually well behaved in actual 
practice, even when fi is reasonably large, say 0.2. 

There are obvious advantages to be obtained by 
regarding the refinement of the 'mean' and 'difference' 
structures independently of each other. This can be 
done by pairing pseudo-equivalent atoms. We invent 
new parameters as linear combinations of old param- 
eters to give a new set of least-squares equations AIUt 
-- B, from the old set of least-squares equations A U= B. 
As before, U=CU1, BI=C+B, AI=C+AC and U= 
(CAF1C +)B. 

If consider the highly covarying pair of variables 
(Au,, Aus) then 

then 

i.e. 

1 
A u  l -  _ _  ( z [u l i ,  -T- z [u l j ,  ) 

1 
Aus-  - - - -  (+ Auw + Autj,) 

2 v V  

Aul,, = V ~ u ,  +__ V-hjjAus 

= -v- + v'aT,,au, . (1) 

Auw refines the mean structure and Auls, refines the 
difference structure. The sign of the off-diagonal term 
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aij of A determines the signs used. The upper ~ign is 
chosen if ais is positive, the lower sign if a~s is negative. 
For example, if the pseudo-symmetry operation relat- 
ing the variable Au~ tc the variable Aus is the inversion 
operator, 1, then a~s is positive for temperature param- 
eters but negative for positional parameters. 

If a variable does not have a variable with high 
covariance associated with it (e.g. scale constant, ex- 
tinction coefficient, a variable for an atom without a 
pseudo symmetric equivalent) then we can still use 
equations (1) by inventing a parameter Aus=O. This 
can be done by expanding the size of  A and making 
ass= 1, a~s=0 (i#j)  and bs=0.  Thus the matrix C - t  
is known (U~ = C-~U) so that the inverse transforma- 
tion A = (C ÷)- ~AtC - ~ can be evaluated. 

The first n/2 equations A~Ut=B~ refine the 'mean'  
structure and the final n/2 equations A IU~ = B~ refine 
the 'difference' structure (dimension of  A~ is n x n) if 
we label our new variables Au~, ( i ' =  1 to n) in a con- 
venient way and eliminate all covariance in the A~ 
matrix by setting all elements not in one of the two 
(n/2 x n/2) diagonal blocks to zero. This prevents the 
refinement of the 'mean' structure and any ncise as- 
sociated with it from upsetting the refinement of the 
'difference' structure. Fractional shifts, co, can be ap- 
plied to either block, by multiplying the elements of 
A~ by 09-a. The modified matrix Ai can then be trans- 
formed back to a modified matrix A' for the variables 
Au, [A'=(C-~)+AIC-I], and the extra dummy vari- 
ables eliminated. 

The least-squares refinement program can then pro- 
ceed in the usual manner. 

The modification of the matrix A to A' can be done 
in an auxiliary program, specific to the example under 
consideration by having a read-out/read-in interrup- 
tion in the least-squares refinement program prior to 
the actual matrix inversion. 

An alternative approach to the problem is to use a 
block-diagonal solution where only variables associated 
with a single atom are allowed to covars. One can then 
evaluat: the changes in a pair of  highly covarying par- 
ameters as 

du~ = 09x(Aui + Au s) + 092(Au, -T- Aus) 
Au) = ~ [ -  092(Au~ + Aus) + 09~(Au, ~ Aus)] 

where the upper sign is used if the term a~s relating 
variables Au~ and Auj is positive. The weight 09~ is the 
weight for the refinement of the 'mean'  structure and 
092 is the weight for the refinement of the 'difference' 
structure. If the term a~s is given by + I/(auass) (1 - 6 )  
where O is small then ideally 

1 1 
091 = ~ and 092 = -d-" 

We should now consider the errors in refined param- 
eters. The covariance between two highly covarying 
parameters has the effect of making the value of the 
standard error for each parameter far worse than if 

the pseudo symmetry were considered real. Consider 
our simple 2 x 2 problem again. 

A= [ a'~ + l/(a~az2) (1-6)  I 
+ l/(aHaz2) (1 - 3) 022 

The evaluation of the variance and covariance depends 
upon the elements of 

A-~_ l lazz -T- l/(aa,a22) (1-3)  ] 
a~ta=2d(2-6) T-l/(al~a2.,) ( 1 - 6 )  a~ 

1__  ~09A2 wherenis t l le ,  num- Then var (u~) = a,6 ( 2 -  6) n -  k 

ber of observations and k is the number of independent 
variables. However, assuming aH= a22, the covariance 
between the parameters ua and u2 makes 

cov (u~ + u2, u~ - u2) = 0 

1 ZooA 2 
var [-}(ul +_ u2)]- 

2all ( 2 -  6) n -  k 

1 ~c~A 2 
var [-}(ul -T- u2)] = 2a1~ -n--k-" 

We see that the 'mean'  structure is still accurately deter- 
mined if 6 ~ 0  but the 'difference' structure is not, 
though a reduction in the value of ~09A 2 made possible 
by the extra degrees of freedom allowed to the solution 
should compensate for this. 

Extension of the problem to the case when there is 
more than one pseudo symmetry operation is feasible 
We change a set of n variables Aui which shows high 
covariance between members of the set to the variable 

. . . .  1 ~ + t a/-~,Au ~ and the n variables + l'ajsAus 
n i=l 

1 ~ + [/-d-£dui ; j =  1 to n One of  these final n vari- . - -  

/ ' /  i = 1  

ables must be eliminated as redundant. The upper sign 
! 

is used for + 1' a ,  if the element a~s is positive for some 
particular Auk in the set. 

If we consider azs= + 1/a~tass ( 1 - 6 )  where d is a 
constant for any i, j and then consider the n variables 
in isolation we find 

(b) b, 

where 

j_-i Ira-. 

bs is the j th  member of the column matrix B and the 
upper sign is used if ais is positive. We see the problem 
still has a great resemblance to the initial two-variable 
problem. Au~ is still considered to be a consequence of 
the refinement of the mean structure and the difference 
from the mean and a weighting scheme for a block 
diagonal solution may accordingly be evaluated. 
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Likewise, the elimination of the noise of the refine- 
' m e n t  of the mean structure from the A matrix may 

be performed in a similar manner as before. 
The pseudosymmetry operator which gives high co- 

variance between parameters need not always allow a 
sensible selection of combination of parameters. An 
example is the pseudosymmetry operators (-}+x, y, 
k - z ) ,  (2-+x, y, ~--z). A refinement procedure for a 
crystal structure with these pseudosymmetry operators 
is currently being investigated, and will be published 
elsewhere. 

We have seen earlier that a full-matrix solution tends 
to overweight the changes in the 'difference' structure 
whereas a block diagonal approach overweights the 
changes in the 'mean' structure but underweights the 
'difference' structure, and so other refinement proce- 
dures may be considered. 

As .,tated in the Introduction, the refinement of the 
'difference' structure is only possible as (sin 0)/2 in- 
creases. Thus the simplest method to reduce covariance 
between highly covarying parameters is to use high- 
angle data or to weight data according to (sin 0)/2. 
Similarly, if there is an index condition so that only 
the 'difference' structure contributes to certain re- 
flexions then the weight of these reflexions can be in- 
creased. 

A combination of a full-matrix approach and a 
diagonal approach can be considered. This is simply 
brought about by multiplying the diagonal elements 
au of the A matrix by a constant, kl, greatei than 1, 
and the elements of the column matrix B by a constant 
k2. The constant kz should be less than kl, otherwise 

the refinement of the 'mean' structure will be over- 
weighted. A down weighting of the refinement of the 
'difference' structure is brought about by a reduction 
of the apparent covariance between parameters. The 
shifts of highly covarying parameters are reduced 
more than the shifts in parameters which are less co- 
variant. A read-out/read-in interruption to the least- 
squares refinement program prior to the inversion of 
the A matrix allows any number of modifications to 
be tested without re-evaluating the A matrix each time. 

This final method has a lot to recommend it. Con- 
sider our simple two-variable example again. The 
equation 

P 

becomes 

kl V~nAul-  fl ? =601/~-]-0)27 
kz 2 - 6 '  + -~ 

where 
1 - 6 ' = k f  -1(1-~) ; k ~ > l .  

~'/~ varies from eo for 6 = 0 to 1 for 6 = 1. Also ( 2 -  6)1~ 
varies from ,2 for ~ = 0 to 1 for ~ = 1, whereas o)zlo)l = 
(2-3 ' ) /6 '  varies from (kl + 1)/(kl-  1) for ~ = 0 to 1 for 
6=1.  

Thus we have a built-in discrimination against those 
parameters of the 'difference' structure which are least 
accurately determined. If we choose kl as 1.4 say, then 
COz/O91 varies between 6 and 1. This procedure will also 
work when a larger set of covarying variables is con- 
sidered. 
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Phase relations between quartets of reflexions can be found either directly from a generalized Hughes 
expression or by elimination of the phase of a reflexion common to two Y2 relationships. By combining 
the information from both types, strengthened quartet relationships (SQR) can be constructed, which 
are comparable to the Y z relations in reliability and number. Most of the reliable SQR's involve the 
strong reflexions only. The phases of these reflexions are related by a highly overdetermined system of 
equations leading in a simple manner to a good starting set. 

List of symbols 

F(H) Structure factor of reflexion H 
En Normalized structure factor 
Un Unitary structure factor 

f Atomic scattering factor 

g Scattering factor of the squared electron den- 
sity of an atom 

N Number of atoms in the unit cell 
V Volume of the unit cell 
S(H) The sign of reflexion H 
~0n The phase of re flexion H 


